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Abstract — The electrocardiogram shows the electrical activity of heart and is used by physicians to inspect the heart condition.
Analysis of electrocardiogram becomes difficult if noise is embedded with signal during acquisition. In this paper, a de-noising
technique for electrocardiogram signal done based on a combined method of high pass filtering with empirical mode decomposition
(EMD) and wavelet de-noising. The major noise present in electrocardiogram signal is baseline wander and powerline interference.
The aim of this proposed work is to remove both noises from the noise affected electrocardiogram signal. This work deals with the
use of Butterworth high pass filter to de-noise the baseline wander followed by the empirical mode decomposition and wavelet de-
noising method to remove powerline interference noise completely. Finally, the signal to noise ratio is calculated for the proposed
system. The high pass filtering with EMD de-noising is twice as better than de-noising of electrocardiogram using EMD technique
only on an average. The Hybrid method consisting of high pass filtering, EMD with Wavelet which is about 4.5 times better on an
average when compared to EMD technique only.

Keywords - Empirical mode decomposition, Wavelet de-noising, Signal de-noising, Filtering algorithms, Signal reconstruction,

Biomedical signal processing.
1. INTRODUCTION

Electrocardiogram shows the electrical activity
of the heart during its contraction and expansion. It is one
of the important tools used by medical practitioners to
examine the pathological condition of the heart. Accurate
analysis of electrocardiogram signals becomes difficult if
it is corrupted by noise during acquisition. The recorded
electrocardiogram signal is often corrupted by different
types of noise such as power line noise, baseline noise,
motion artifacts etc which may change the characteristics
of electrocardiogram signal. Power line noise causes
errors by distorting the electrocardiogram signal during
the measurement of the QRS complex interval or the QT
interval, which are important parameters in diagnosis. The
drift of the baseline is usually caused by respiration of the
patient. The drift of the baseline with respiration can be
represented by a sinusoidal component at the frequency of
the respiration added to the electrocardiogram signal. The
amplitude and frequency of the sinusoidal component
should be variables. The variation could be reproduced by
amplitude modulation of electrocardiogram by the
sinusoidal component added to the baseline. The baseline
wander is a low-frequency noise (below 1 Hz). It is used
as a diagnostic parameter for myocardial infarction.
Effective removal of the baseline wander is recommended
for the measurement of the ST segment with precision
and to extract useful information from the signal.
Recently, researches from biomedical signal processing
have been reported in the literature for electrocardiogram
de-noising such as El-Sayed [2] etal proposed genetic
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algorithm and wavelet hybrid scheme based de-noising
electrocardiogram. Julien Oster [3] proposed a method
based on Bayesian Filtering for  de-noising
electrocardiogram Rik Vullings[13] proposed a method of
adaptive Kalman filter for electrocardiogram signal
enhancement . Alireza K. Ziarani [1] proposed a nonlinear
adaptive method to remove power line interference noise.

The electrocardiogram data sets are taken from the
MIT-BIH Arrhythmia database. These data sets have been
frequently used as benchmarks to compare the
performance of different noise reduction methods in the
literature.

IL.,THEORETICAL BACKGROUND

A. Empirical Mode Decomposition

The Empirical Mode Decomposition was proposed by
Huang et al. as a new signal decomposition method for
nonlinear and non stationary signals [18]. The EMD
decomposes a signal into a collection of oscillatory
modes, called Intrinsic Mode Functions (IMFs), which
represent fast to slow oscillations in the signal. By
applying empirical mode decomposition a signal can be
decomposed into a set of mono component functions
called Intrinsic Mode Functions (IMFs) (Huang etal.,
1998). A mono component function indicates an
oscillating function close to the most common and basic
elementary harmonic function. Therefore, the intrinsic
mode functions contain frequencies ranging from the
highest to the lowest ones of the signal presented as
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amplitude and frequency modulated (AM-FM) signals,
where the AM carries the envelope and the FM is the
constant amplitude variation in frequency and calculated
using a sifting process. Each IMF can be viewed as a sub
band of a signal. Therefore, the EMD can be viewed as
sub band signal decomposition. To accomplish this, an
intrinsic mode functions must satisfy two conditions.

1) The number of extrema (local maxima and minima)
and the number of zero crossings must either equal or
differ at most by one.

2) At any point, the mean value of the envelope defined
by the local maxima and the envelope defined by the local
minima is zero.

The first condition is necessary for oscillating data to
meet the strict conditions needed to calculate the
instantaneous frequency that presents the oscillation
frequency of a signal at certain point of the time Huang
etal [18]. It leads to a narrow-band signal. The second
condition requires symmetric upper and lower envelopes
of an intrinsic mode functions which makes the signal
ready for modulation as the intrinsic mode functions
component is decomposed from the original data Huang
etal [18]. It is quite a challenging task to find the
envelopes because of the nonlinear and non-stationary
nature of the data.

The main idea behind intrinsic mode functions is to
separate the data into a slowly varying local mean part
and a fast varying symmetric oscillatory part, with the
latter part becoming the intrinsic mode functions and the
local mean defining a residue. This residue serves as input
for further decomposition, with the process being repeated
until no more oscillations can be obtained. A sifting
process is applied to iteratively separate the different
oscillatory riding components of the signal, starting with
the fastest and ending with the slowest component. By
adding all the IMFs the original signal can be recovered.

Given a signal x (t), the effective algorithm of EMD can
be summarized as follows.

1) Identify all extrema of x (t).

2) Interpolate along the point of x(t) identified in the first
step, in order to form an upper ey, (t) and lower envelope
emin(t)'

3) Compute the mean
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In(t):(emin(t)+emax(t))/2 ( 1 )

4) Extract the detail d(t) = x(t) — m(t).
5) Iterate on the residual m (t).

But practically, the previous procedure has to be
refined by a sifting process [19], which amounts to first
iterating steps 1 to 4 upon the detail signal d(t), until this
latter can be considered as zero mean according to some
stopping criterion. Once this is achieved, the detail is
referred to as an IMF, the corresponding residual is
computed and step 5 applies. By construction, the number
of extrema is decreased when going from one residual to
the next, and the whole decomposition is guaranteed to be
completed with a finite number of modes. The above
procedure to extract the IMF is referred to as the sifting
process. The stopping criteria used to terminate the sifting
process is the sum of difference (SD)

0= ) (matnel)
hi_y(t] )
f=M

When the sum of difference is smaller than a threshold,
the first IMF is obtained, which is written as

11 (1) =x(t) — ci(t) 3

Yet the residue r,(t) still contains some useful
information. Hence, the residue should be considered as a
new signal and continue applying the above procedure to

obtain
ri(t) — ca(t) = ra(1),

i (6) — on(t) = r(t) 4@

The whole procedure terminates when the residue ry(t)
is either a constant, a monotonic slope, or a function with
only one extremum. Combining the equations in (3) and
(4) yields the EMD of the original signal.
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Figure 1: (a) Input Electrocardiogram 100.m recorded signal; (b) EMD based denoised output of Electrocardiogram 100.m
recorded signal; (¢) Intrinsic mode function of 100.m electrocardiogram signal
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X ()= Eg:lﬂn{t} + gt (5)

The result of the EMD produces N IMFs and a residue
signal. For convenience, the cn(t) is referred as the n th-
order IMF. By this convention, lower-order IMFs capture
fast oscillation modes while higher-order IMFs typically
represent slow oscillation modes. In the interpretation is
done for EMD on a time-scale analysis method, lower-
order IMFs and higher-order IMFs correspond to the fine
and coarse scales, respectively High-frequency de-noising
by the EMD is carried out by partial signal reconstruction,
which is based on the fact that noise components lie in the
first several IMFs. Noise encountered in ECG
applications is usually located in the high-frequency band.
Hence, the IMFs corresponding to those noises are
removed and then construction of the original signal is
obtained by summing up the remaining IMFs to obtain
de-noised signal. But, yet the process noise is not
completely removed.

B. Baseline Wander:

The baseline wander in electrocardiogram is usually
caused by respiration of the patient. Baseline wander
could mask certain important characteristics in the ECG
wave which makes wave detection and signal
classification difficult. The variation could be reproduced
by amplitude modulation of electrocardiogram by the
sinusoidal component added to the baseline.

In order to remove base line wander Butterworth high
pass filtering is used. The cutoff frequency of high pass
filter is experimentally set to be 0.5 Hz, which achieves
best removal of baseline noise in electrocardiogram. After
applying Empirical mode decomposition to the input
signal which is record no 100.m electrocardiogram signal
power line noise is removed but baseline noise is not
completely removed completely. In order to overcome the
problem, high pass filtering method is done before
performing empirical mode decomposition.
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III. PROPOSED METHOD

A. High pass filtering

In the proposed method both Butterworth high pass
filter and wavelet de-noising is used to remove both
baseline wander and power line noise completely. Steps
followed in hybrid technique are as follows:

Step-1 The -electrocardiogram signals from the MIT
Arrhythmia database with both power line and baseline
noise is given as input

Step-2 Set a sampling frequency =360Hz and cut-off
frequency= 0.5Hz for the Butterworth high pass filtering
to achieve best result of removing baseline wander noise.
Step-3 Apply EMD based de-noising to remove power
line noise.

After applying high pass filter with empirical mode
decomposition, baseline noise and power line noise is
removed. The high pass filtering with EMD in
comparison with the EMD based de-noising for the
electrocardiogram signal and it gives an improved signal
to noise ratio as shown in Table .

TABLE I: SNR COMPARISON OF EMD
AND HPF & EMD

ECG SNR(dB) | SNR(B)
for High
Record for pass filter
No EMD and EMD
100 43502 9.6263
103 54178 6.6076
113 7.1286 8.1421
114 4.1228 10.196
121 4.0814 23.536
201 4.088 9.9091

In order to improve quality of the signal, wavelet de-
noising method is performed on the proposed method. By
applying wavelet, the signal quality and signal to noise
ratio can be enhanced. The proposed method is carried on
ECG records 100,103,113,114,121 and 201 from the MIT
arrhythmia database. The above records were chosen as
they contain both power line and baseline noise.
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Figure 2: (a) Input electrocardiogram signal; (b) Denoised ECG signal using Butterworth high pass filter;
(c) Denoised ECG by giving the output of HPF to EMD (d) Noise obtained after applying high pass filtering and EMD.
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B. Wavelet Based ECG Denoising:

In wavelet based de-noising, a signal is decomposed to
a certain level using Discrete Wavelet Transform (DWT),
a set of wavelet coefficients is correlated to the high
frequency sub bands while the other wavelet coefficients
are correlated to low frequency sub bands. Matlab
Wavelet Toolbox is used for calculating the DWT to
decompose the signal into wavelet coefficients and then to
reconstruct the signal using inverse discrete wavelet
transform (IDWT). The application of wavelet noise
suppression requires the selection of different parameters:
Wavelet basis function, the thresholding type,
thresholding selection rule, decomposition level, and a
noise scaling option.

The first step in producing a wavelet de-noising is to
choose a wavelet basis function to be used in signal
decomposition. Different types of wavelet (orthogonal
and bi orthogonal) are available in Matlab toolbox. The
selection of a suitable level depends on the signal. Often
the chosen level is based on a desired low-pass cutoff
frequency. The high frequency sub bands contain the
details in the data set. If these details are small, they
might be removed without substantially affecting the
main features of the data set.

Therefore, by setting the wavelet coefficients
corresponding  to these small details as zero, the noise is
removed. This becomes the basic concept behind
thresholding. Applying the IDWT on the results may lead
to reconstruction with essential signal characteristics and
less noise [6, 7]. Two types of thresholding functions are
which are often used are hard thresholding and soft
thresholding [5].

Wavelet de-noising scheme can be summarized as
follows:

Step-1 The output of the proposed method is given as
a input to the wavelet de-noising method.

Step-2 Set the proper wavelet thresholding de-noising
parameter ranges for electrocardiogram signal.

Step-3 Perform a 1-Dimensional discrete wavelet
transform  for the noisy electrocardiogram signal to get

all the wavelet coefficients

Step-4  Threshold the noisy coefficients in
electrocardiogram signal with the optimal thresholds, and
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obtain the modified new electrocardiogram components
after the reconstruction of the signal.

IV. RESULTS AND DISCUSSIONS

To calculate the filtration efficiency of the proposed
technique, several real world datasets were downloaded
from the MIT-BIH database. Each of the
electrocardiogram  records  has  the  following
specifications: signal length is 3600 samples; sampling
rate is 360 Hz with 11 bits per sample of resolution. These
data sets have been frequently used as benchmarks to
compare the performance of different noise reduction
methods in the literature. Simulations for several different
cases carried out to evaluate the performance of the
proposed hybrid technique based method.

A noisy signal s(t)=x(t)+n(t) is processed to obtain an
enhanced reconstructed version . The corrupted signal
s(t) consists of an clean signal x(t), which is free of noise,
and a noise component realization n(t) .Three groups of
experiments are presented.

The first simulation experiment is performed over
electrocardiogram with power line noise and baseline
noise by using EMD. Drawback of the first experiment is
that it removes only the power line noise and does not
remove the baseline noise. Second experiment is
performed over the same data set which removes both the
power line and the baseline wander noise using hybrid
technique of Butterworth high pass filtering and EMD de-
noising. Third experiment is the hybrid method
comprising of adding wavelet de-noising method added to
the combined technique of HPF and EMD for improving
signal quality and SNR. Every record considered here
consists of two lead recordings sampled at 360 Hz with 11
bits per sample of resolution.

The quantitative evaluation is assessed by the signal-to
noise ratio (SNR)

SNR = I _-E*:E;.; - e (1)

where x (t) is the original clean signal and #(E) is the
reconstructed signal.

The Figure 3 shows the result of combination of high
pass, EMD, and wavelet. The Daubechies wavelet
transform is used as it allows perfect and simple
reconstruction of the original signal [5].
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Figure 3: (a) Proposed method (HPF+EMD); (b) Output after applying wavelet denoising method to the HPF, EMD
method; (c) Noise obtained after applying HPF,EMD and wavelet denoising .

Even though hard thresholding is the simplest method to
use in comparison with soft thresholding, soft
thresholding can produce better results than hard
thresholding, as hard thresholding may cause
discontinuities in the signals. The SNR of the hybrid

technique with simple wavelet de-noising using
daubechies families shows improved signal to noise ratio
in proposed method. The performance analysis of all the
discussed methods is shown in a Table II.

TABLE.II SNR COMPARISON OF THE THREE METHODOLOGIES ADOPTED
ECG Record EMD HPFLEMD HPF+EMD+WAVELET
No SNR(dB) SNR(B) (Db3)
SNR(dB)
100 43502 9.6263 234
103 5.4178 6.6076 25.0
113 7.1286 8.1421 29.1
114 4.1228 10.196 30.9
121 4.0814 23.536 25.6
201 4.088 9.9091 274
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V. CONCLUSION

A hybrid de-noising technique for electrocardiogram
signals is proposed based on the combination of
Butterworth high pass filtering, EMD de-noising and
wavelet de-noising method. This technique is used to
remove both baseline wander and power line noise.
Selection of wavelet de-noising is critical to remove
baseline wander noise elimination process for the
electrocardiogram signal. Efficient selection of cut-off
frequency of high pass filter is necessary to remove
baseline noise completely. This proposed technique
achieves a best quality of electrocardiogram signal. It
could be concluded that, the noise reduction of a signal
depends on the optimum value of the level of
decomposition, suitable forms of wavelet family and the
thresholding  techniques. The  empirical mode
decomposition and high pass filter based de-noising is
twice better than de-noising using EMD alone on an
average. The Hybrid method consisting of High pass
filter, EMD and Wavelet (Db3) is about 4.5 times better
on an average in comparison to using Empirical mode
decomposition alone. Hence, in future this approach can
be used in devices for real time monitoring of
electrocardiogram.
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